Indian Statistical Institute Mid-Semestral Examination Differential Geometry I MMath I

Max Marks: 40 Time: 3 hours

(1)	(a)	Define the terms: curvature, signed curvature. How are the signed curvature
		and the curvature of a unit-speed plane curve related?
	(b)	Let σ be a unit-speed plane curve. Show that $\dot{\mathbf{n}}_s = -\kappa_s \mathbf{t}$ where \mathbf{n}_s , κ_s and
		\mathbf{t} denote the signed unit normal, the signed curvature and the tangent vector
		respectively. Show that the signed curvature κ_s is smooth.
	(c)	A unit-speed plane curve σ has the property that its tangent vector $\mathbf{t}(s)$ make
		a fixed angle θ with $\sigma(s)$ for all s. Show the following: (i) If $\theta = 0$, then σ is
		part of a straight line, (ii) If $\theta = \pi/2$, then σ is part of a circle.
(2)	\ /	Define the terms: principal normal, binormal and torsion. [3]
	(b)	Let σ be a regular curve in \mathbb{R}^3 with nowhere vanishing curvature. Show that
		the image of σ is contained in a plane if and only if its torsion is zero at ever
		point.
	(c)	Let σ be a unit-speed curve in \mathbb{R}^3 whose principal normal n always point
		towards the origin. In other words, there is a function $\lambda(s) > 0$ such that
		$\sigma(s) + \lambda(s)\mathbf{n}(s) = 0$ for all s. Find the curvature and torsion of σ . What is the
		image of σ ?
(3)	\ /	Define the terms: smooth surface, orientable surface.
	(b)	Show that the Mobius band is a non-orientable smooth surface. [8]